Enzymatic modifications of exopolysaccharides enhance bacterial persistence

نویسندگان

  • Gregory B. Whitfield
  • Lindsey S. Marmont
  • P. Lynne Howell
چکیده

Biofilms are surface-attached communities of bacterial cells embedded in a self-produced matrix that are found ubiquitously in nature. The biofilm matrix is composed of various extracellular polymeric substances, which confer advantages to the encapsulated bacteria by protecting them from eradication. The matrix composition varies between species and is dependent on the environmental niche that the bacteria inhabit. Exopolysaccharides (EPS) play a variety of important roles in biofilm formation in numerous bacterial species. The ability of bacteria to thrive in a broad range of environmental settings is reflected in part by the structural diversity of the EPS produced both within individual bacterial strains as well as by different species. This variability is achieved through polymerization of distinct sugar moieties into homo- or hetero-polymers, as well as post-polymerization modification of the polysaccharide. Specific enzymes that are unique to the production of each polymer can transfer or remove non-carbohydrate moieties, or in other cases, epimerize the sugar units. These modifications alter the physicochemical properties of the polymer, which in turn can affect bacterial pathogenicity, virulence, and environmental adaptability. Herein, we review the diversity of modifications that the EPS alginate, the Pel polysaccharide, Vibrio polysaccharide, cepacian, glycosaminoglycans, and poly-N-acetyl-glucosamine undergo during biosynthesis. These are EPS produced by human pathogenic bacteria for which studies have begun to unravel the effect modifications have on their physicochemical and biological properties. The biological advantages these polymer modifications confer to the bacteria that produce them will be discussed. The expanding list of identified modifications will allow future efforts to focus on linking these modifications to specific biosynthetic genes and biofilm phenotypes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigenetic Modifications of Host Genes Induced by Bacterial Infection

Introduction: Epigenetic mechanisms regulate expression of the genome to generate various cell types during development or coordinate cellular responses to external stimulus. While epigenetics is of fundamental importance in eukaryotes, it plays a different role in bacteria. This article uncovers the most important recent data on how bacteria can alter epigenetic marks and can also contribute t...

متن کامل

Cyclic di-GMP as a bacterial second messenger.

Environmental signals trigger changes in the bacterial cell surface, including changes in exopolysaccharides and proteinaceous appendages that ultimately favour bacterial persistence and proliferation. Such adaptations are regulated in diverse bacteria by proteins with GGDEF and EAL domains. These proteins are predicted to regulate cell surface adhesiveness by controlling the level of a second ...

متن کامل

Production of exopolysaccharide by Burkholderia cenocepacia results in altered cell-surface interactions and altered bacterial clearance in mice.

Despite the characterization of some Burkholderia cepacia complex exopolysaccharides (EPSs), little is known about the role of EPSs in the pathogenicity of B. cepacia complex organisms. We describe 2 Burkholderia cenocepacia (genomovar III) isolates obtained from a patient with cystic fibrosis (CF): the nonmucoid isolate C8963 and the mucoid isolate C9343. Both isolates had identical random amp...

متن کامل

Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine

Probiotic bacteria are administered as live microorganisms to provide a health benefit to the host. Insight into the adaptation factors that promote the survival and persistence of probiotics in the gastrointestinal tract (GIT) is important to understand their performance. In this study, the role of the long galactose-rich exopolysaccharides (EPS) of the prototypical probiotic strain Lactobacil...

متن کامل

Bacterial Exopolysaccharides: Functionality and Prospects

Diverse structural, functional and valuable polysaccharides are synthesized by bacteria of all taxa and secreted into the external environment. These polysaccharides are referred to as exopolysaccharides and they may either be homopolymeric or heteropolymeric in composition and of diverse high molecular weights (10 to 1000 kDa). The material properties of exopolysaccharides have revolutionized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015